
Template Based Authoring

for Augmented Reality based Service Scenarios

Christian Knöpfle1, Jens Weidenhausen1,
Laurent Chauvigné2, Ingo Stock2

1Fraunhofer-IGD
{knoepfle,weidenh}@igd.fhg.de

2BMW Group
{laurent.chauvigne,ingo.stock}@bmw.de

ABSTRACT
As of today one of the major application domains for Augmented
Reality is the service and maintenance of manufactured products,
e.g. cars, planes, large machinery. In this area, Augmented Reality
is used to support the service personnel in carrying out their repair
tasks by augmenting context-sensitive, additional, virtual
information in their field of view. One major problem is the
creation of such information. In this paper the authors describe a
concept and its realization, which heavily simplifies the creation
of AR based manuals and even allows people without special AR
and IT skills to carry out this task. The core idea is template based
authoring: The editor of an AR based manual describes scenes at a
very high and abstract level for example ”remove the v-belt” or
“dismantle acoustic cover of the engine”. The tool transforms this
description into VRML-based statements including animations
(e.g. transformation of geometrical objects, use of
PositionInterpolators). Furthermore the authors describe the
realization of the tool and its integration in an AR environment.

CR Categories and Subject Descriptors: I.3.7, I.3.4, J.2.5
Additional Keywords: Augmented Reality, Virtual Reality,
Authoring

1 INTRODUCTION
In many industrial areas it is a known fact that the products are
getting more and more complex and the development time is
getting shorter with each new product. A technology that heavily
supported this trend was Virtual Reality.
But this trend has not only an effect on the development and
production, but also on the service and maintenance of these
products (“after sales”). The consequence: Training of the service
personnel has to be more intensive and the documentation more
extensive. Since the available time gets shorter and shorter,
creation of appropriate documentation is getting more
challenging. This also applies for the training. In the near future
the available time will be too short to carry out these tasks in an
appropriate manner.
Consequently there is a big need for a technology, which supports
the service and maintenance task for complex products:
Augmented Reality (AR).
For the past years, Augmented Reality[1] has matured a lot and as
of today there are many companies evaluating or already using
this technology in their application areas. The prominent domain
is the one mentioned above, the service.
There are several AR-systems available, developed by research
institutes, universities and commercial companies (HIT-Labs
ArToolkit [2], the studierstube system [7] or the ARVIKA AR-
Browser [[9]]). All of these systems are able to augment the user’s

field of view with virtual information and have a more or less
decent tracking system to determine the users position and
viewing direction for the correct registration between the real and
virtual world.
But one of the major issues is not covered by those systems: How
can content be created for augmented reality applications easily,
especially for augmented reality based manuals for service tasks?
As there is a lack of such tools creation is tedious, time
consuming and expensive. It is worth to point out that the
existence of AR authoring tools is crucial for the success of the
technology in the targeted application domain (surely in other
areas too) and sooner or later not become a thing of the past.
In this paper we will describe our approach Template Based
Authoring, the core concepts, the design, implementation and
integration in a work environment of an authoring tool for AR
applications in the area of service and maintenance assistance.
Before we go into detail, we will describe the previous work in
the next chapter.

2 PREVIOUS WORK
Assistance in service and manufacture tasks can be regarded as a
classic topic of augmented reality applications. In the early 90s
Feiner [4] presented a system that assists the user in the
maintenance of a laser printer.
Caudell and Mizell [3] described an augmented reality assistance
for the task of manufacturing wire bundles for aircrafts. A more
recent example is the ARVIKA project [9], where augmented
reality assistance applications were developed for a broad range of
production and service scenarios. Albeit the problem of creating
mixed reality service instructions is addressed insufficiently.
So far only few prototypical authoring systems exist that require
no programming skills for authoring augmented and mixed reality
content.
The MARS Authoring Tool [5] allows to associate multimedia
content with geographic locations. The author, in this case a
journalist, can interactively place documents in a 3d model of the
real environment. Due to the diverse application domain a specific
support for technical documentations is not provided.
The Approach described by Haringer [6] is based on the 2D
presentation tool Microsoft PowerPoint. A technical
documentation editor can compose work steps by arranging
elements in 2D on PowerPoint slides. The specialized 3d editor
Powerscape processes the PowerPoint XML output and allows
further spatial arrangements. Although the PowerPoint slide
metaphor nicely fits the workflow structure, 3d animated work
steps are only supported faintly.
The AMIRE Authoring Wizard [8] is aimed to support an editor
in composing assembly instructions for hierarchical structures.

The instructions itself are put together in the mixed reality
environment using interactive placement tools.
We can conclude that there is a lack of authoring tools for AR
based content which can be used by people without decent AR
and IT skills.

3 TEMPLATE BASED AUTHORING
In this chapter the concept of template based authoring will be
described. First an overview is provided and then the different
components of the concept presented in more detail. At the end
some implementation issues are discussed.

3.1 Analyzing real world scenarios
Our major goal was to develop an authoring tool, which can be
used by people, who are familiar with traditional authoring tools
and the machinery and tasks they have to describe but have very
little AR and 3D graphics knowledge. Additionally we can’t
presume advanced programming skills.
We started with analysis of typical service tasks and tried to find a
generalization or patterns, which might be helpful for design of
such a tool. Typical service tasks are:
- Change oil filter
- Change battery
- Replace v- or drive belt
- Replace gear box
All of these tasks are built upon “atomic” work tasks (operations),
which have to be carried out in a specific order. For example in
the battery scenario, the worker has to carry out 8 atomic
operations:
1. remove the earth cable from the battery negative pole
2. remove the positive cable from the battery positive pole
3. release the screws, which are fixing the battery
4. remove the battery from the engine bay
5. insert new battery to engine bay
6. fasten the screws, which are fixing the battery
7. attach the positive cable to the battery positive pole
8. attach the earth cable to the battery positive pole
In this example, one could immediately see, that most operations
are similar (e.g. remove) and only differ in their parameterization
(e.g. cable and pole).
To verify this observation we investigated five different and
complex service scenarios, one in the interior, one in the trunk,
and three in the engine compartment. The longest scenario
consists of 75 operations and a mechanic needs about one hour to
perform it. The goal of this scenario is to replace an adjustment
unit of the engine. In total, the five service tasks comprise of 300
operations. We classified this operations and assigned them to
abstract classes.
The following three classes represent the operations which are the
most common ones:

Release and fastening
Nearly all parts are connected to another part by using a fastening.
The necessary parameters for operations of this class are the
following:
- The kind of fastening (screw, clamp, bolt, etc.)
- The tool needed for dismantling (screwdriver, ratchet,

wrench, etc.).
For the Tool itself, several parameters are needed:
- The specific configuration of the tool (e.g. size of an Allen

wrench)
- The initial position of the tool relative to the part
- The movement of the tool (e.g. ratchet behaves differently

than a screwdriver)
- The movement of the part, when the tool is operated

- The connection point between the tool an the part

Remove and insert part
After the fastening of a specific part is released, the part can be
removed. In many cases it is necessary to know how to remove
the part. Therefore following parameters are important:
- The motion for removing the part (e.g. a linear motion or

rotation for removing a lid)
- The axis of rotation
- The end point of the motion
- The location where the mechanic should touch the part

Unlock and lock plug
In most technical products a lot of control units are installed.
These units are connected by wire to other control boxes,
actuators or sensors.
The necessary parameters for this class are as follows:
- The kind of plug
- The kind of fastening (screw, clip, etc.)
- The tool needed for unlocking (e.g. hand)

Additional textual information is needed for all classes (e.g.
maximum torque which should be applied to a nut).
We classified the 300 operations of the 5 scenarios and 256 of
them belong to the three classes mentioned above. We had
“release fastening”-type operations 69 times, “remove part” 126
times and “unlock plug” 61 times. Thus 85% of the operations
were similar. They only differed in their parameterization.
We can conclude that typical service scenarios are based on
atomic operations, which have to be carried out in a predefined
order. Most operations are similar, they only differ in their
parameterization.

3.2 The core concept
This observation built the foundation for our core concept of an
authoring tool for Augmented Reality based service manuals.
Such atomic, parameterizable operations are in some way similar
to the template concept in C++, thus we coined the term template
based authoring.
It is important to note that still the most important demand is the
fact that the author doesn’t have to take care of the graphical
representation of such an operation. Based on the information
given by the author the graphics must be generated automatically.
Thus the graphics must be part of the implementation of each
operation / template. In the following chapter we will discuss the
templates in more detail.
In order to make templates work smoothly together with objects
of the 3D-scene, we added an abstraction layer to all these objects.
This layer is described in chapter 3.4.
Since a single template encodes only one operation, we also need
the possibility to arrange multiple operations in a temporal order
or as a sequence. The arrangement and transitions between
operations will be described in chapter 3.5.
The major advantage of this approach is the fact that this concept
fits very well in the way professional technical writers work and
think today. The major task of such an author is to think about the
procedures and operations a worker has to carry out. He also
defines the tools and in case of a complex disassembly path the
best motion of the part. In terms of the authoring tool the user has
to instantiate a template. To parameterize it and define a temporal
order of the instantiated templates.

3.3 Templates
When the author defines an operation remove screw using a
screwdriver, the graphical echo should be similar to the following:

The screwdriver is shown and placed above the screw. Then the
screwdriver is animated, turning the screw upwards. After
dismantling, the screw and screwdriver should vanish.
It is important to point out that the reverse operation (screw in of
a screw) differs not only in the direction the animation is played
back but also in the visibility of the objects. In the remove-
operation the screw is part of the scene and visible from the very
beginning. In the screw-in-scenario the screw should be added to
the scene, thus is invisible until the screwdriver appears and the
animation is played back.
We evaluated several other operations and for all of them
animation and visibility of associated parts are depending on the
template. Therefore the template is responsible for controlling
animation and visibility.
To enable the template to carry out these tasks, we defined a
minimal API, which has to be supported by every template:
- set_fraction(float f): This member function is called by the

application and provides a float value in the range [0;1]. The
animation of the parts is controlled by this value. A ‘0’ is
equivalent to the beginning of the animation and a ‘1’ to the
end of the animation.

- reset(bool b): This function informs the template, that the
scene is set-up and will be presented to the user. For example
a screw-in template will switch off the screw when the
function is called.

- animate(bool b): This function informs the template, that it
has to begin (b==true) or end (b==false) the animation
(similar to set_fraction(0) and set_fraction(1.)). For example
the screw-in template will switch on screw and tool when
called with b==true.

As the template concept distinguishes between generic templates
and specific parameter sets it strongly supports the idea of
reusability. A programmer implements the potentially needed
templates just once and stores them into a database. The editor
just selects the appropriate templates from this predefined set to
model a given operation or work task.

3.4 Abstraction Layer for Scene Objects
Almost every template accesses objects in the scene, (parts and
tools) and performs several operations on it, e.g. animating and
changing visibility. To guarantee that templates are able to operate
on any object in the scene and to simplify the task of developing
new templates, all objects in the scene should follow given
guidelines.
To develop reasonable rules, we analyzed the different scenarios
and also took into account the available data at the end user site
(BMW AG). In fact we can distinguish between three types of
objects:
- Parts (e.g. engine hood): A part is defined in the car

coordinate system
- Standard parts (e.g. screws): A standard part is defined in its

local coordinate system and is loosely connected to the part it
belongs to. These objects reside in a different database than
the parts

- Tools (e.g. ratchet or custom tools): Tools are defined in their
local coordinate system and are stored in a third database.

First we defined the following general modeling guidelines for all
objects:
- Objects must be modeled in millimeters
- Cartesian coordinate system with z as up vector is used
- All objects are stored in VRML97 format.
- Exactly one object is stored in a single VRML97 file.
There are no additional specific model rules for parts.
An important information for tools is the contact point, where a
(standard) part and the tool will be connected to each other. The

contact point must be at the origin of the tools local coordinate
system. Any tool has to be defined accordingly (see Fig 1).

Fig. 1: Contact point of the tool

Tools also define a specific movement, e.g. a screwdriver rotates
around a single axis and a ratchet has a back and forth movement.
This behavior must be defined together with the tool. Since the
tool movement is not implicitly identical to the movement of the
connected part (e.g. the back and forth movement of a ratchet), a
second animation must be defined, which is then used to move the
part.
In order to animate a tool, the tool abstraction layer offers a
function, which is similar to the one described in chapter 3.3. The
current state of the animations, which depends on the function-
value are accessible via a defined API. This allows to propagate
new position and orientation values to the part, which is
connected to the tool.
Until now we only had screws and connectors as standard parts.
For correct interaction between standard parts and tools, the
geometric model of the part must be oriented in that way that the
contact point is at the origin of the parts coordinate system. The
following figure illustrates this fact.

Fig. 2: Coordinate system of a standard parts

Additionally the position and orientation of each standard part in
the car coordinate system must be supplied. See chapter 3.6.2 for
implementation issues.
Besides the modeling rules, each part should offer a well-defined
set of operations. In our current implementation the only function
offered is set_visibility, which allows to hide and show the object.

3.5 Temporal Order of Operations
Another important issue is the temporal order already

mentioned above. A simple approach would be that each
operation is played back once and then the user has to issue the
command “next” (via speech recognition or other user interface).
This approach has several drawbacks in terms of usability:
When the operation is played back only once and the user didn’t
understand it, he has to issue another command. This might be
cumbersome for him.
Imagine a scenario where a lot of screws has to be removed. If the
task is simple and no specific order has to be maintained, the user
has to issue “next” a lot of times, which will certainly bother him.
Consequently we need a more sophisticated control which bears
the needs of a professional mechanic in mind. We can assume that
such a mechanic has good knowledge about the nature of most
operations and that he is familiar with general service tasks. Thus
not all tasks and operations he has to carry out are at the same
level of complexity (which might as well be true for people of
other professions).
In our concept we distinguish between the following entities:
- Template (Operation)

- Work step
- Task
Operations were already discussed in chapter 3.3. In the following
chapters Work step and Task will be presented.

3.5.1 Work Step
A work step combines multiple templates and defines a time span.
The sequence of the operations can be defined freely, thus each
template has a starting time within the time span of the work step.
This allows to play back several operations at the same time,
overlapping or as a sequence. The work step is looped over and
over until the user issues a command like “next”. See the
following figure, which illustrates this concept.

Start
remove
screws

disassembly
path

End
Start

remove
screws

disassembly
path

End

Fig. 3: A work step

A work step is used, when the operations are easy to understand
and several of them can be presented to the user without
overloading his cognitive abilities.

3.5.2 Task and Workflow
A task combines multiple work steps and represents a full service
task e.g. replacing the gearbox. The order of the work steps is not
time based but event based. In the most simplest scenario the
event is the “next” command triggering the next work step to be
played back (linear sequence).
But the user interaction is not limited to the “next”-command.
Sometimes the user has to inform the system about the outcome of
a work step and then the appropriate next work step is displayed.
The following figure illustrates this fact. Work steps are
represented by boxes, branches by diamond shapes.

Fig. 4: Task and Workflow

Due to space constraints the workflow engine will be omitted in
this paper.

3.6 Implementation issues
The implementation of the generic concept was based on our
Mixed Reality System AVALON ([[10]]), which is a joint
development of Fraunhofer-IGD and ZGDV e.V.. AVALON is a

100% compatible VRML97 client and offers several extensions
needed for Virtual and Augmented Reality applications. This
system is based on the Open Source Scenegraph OpenSG ([[11]]).
The described generic concept of templates can be easily
transferred to an object oriented approach. Templates which are
the actual operations (e.g. “remove a specific part with a specific
tool”) are comparable to the concept of classes. They offer a
specific behavior and a well-defined programming interface.
Parameterization of templates (e.g. define the specific part and
tool) is similar to the instantiation of classes and invocation of set-
methods. Needless to say that parameters can be changed at run-
time too.
VRML97 ([13]) offers mechanisms supporting this concept. In
VRML97 everything is a node, which is in a object oriented way
simply a class. So the idea was to use the node concept to realize
templates.
To create new nodes, VRML97 offers the concept
EXTERNPROTO. An EXTERNPROTO defines an interface (via
named fields) and an implementation, which itself consists of
VRML97 nodes including ECMAScript-nodes. Script nodes are
very helpful for defining the behavior of such a new node. The
advantages of EXTERNPROTO are:
- compatibility with any VRML97-browser
- extensive documentation is available
- rapid development
Of course, one could use the proprietary C++ interface of a
browser, but this will result in nodes, that are not compatible to
any other browser. On the other hand the C++ interface offers
much more freedom and flexibility.
Our implementation of templates and the temporal order is fully
based on the EXTERNPROTO mechanism. The authoring tool
itself uses the C++ interface of AVALON.

3.6.1 Templates
The functions mentioned in chapter 3.3 are declared and
implemented as eventIn fields. Additional parameters, which have
to be provided by the user are implemented in the same way (e.g.
referencing a part). Those fields are directly linked to a Script-
node, where the functionality of the template resides.
For the automatic creation of the parameterization dialogue
window in the authoring tool (see chapter 4.1), we additionally
have to encode plaintext descriptions of the eventIn-fields. This is
done by using specific MFString-fields, storing the name of the
eventIn-Field and the corresponding textual description. This data
is provided by the template programmer.
This template visualizes the removal of standard parts, e.g.
screws, by using a tool. The only information which must be
provided are the part via set_object(), the tool via set_tool() and
the direction of the animation (unscrew or screw-in).

3.6.2 Parts, Standard Parts and Tools
Every object in the scene is wrapped with an EXTERNPROTO
node implementing the concepts described in chapter 3.4. The
actual geometry is defined through an Inline-node. Via the
EXTERNPROTO interface the wrapped object can be moved
around and its visibility changed. This is actually realized with a
small scenegraph consisting of Switch- and Transform-nodes
within the EXTERNPROTO node.

3.6.3 Temporal order
For the realization of the temporal order we implemented two
different nodes. A TimeGroup node, which provides the global
TimeSensor for the whole work step. Only one TimelineGroup
node exists per work step. Furthermore we implemented Timeline
nodes, which are associated to operations and convert the global
time provided by the TimelineGroup node into the local time

(t∈[0;1]) needed by the templates. They also call the animate()-
function of the templates.
The TimelineGroup node offers an interface to start and stop the
animation of the whole work step. This node triggers the reset()-
function of all templates of the work-step.

TimelineGroup

time

0 timespant1[0] t1[1]
t2[0]

t2[1]
t3[0]

t3[1]

TimelineGroup

time

0 timespant1[0] t1[1]
t2[0]

t2[1]
t3[0]

t3[1]

Timeline1

Template1
Timeline2

Template2
Timeline3

Template3

Timeline

Timeline1

Template1

Timeline1

Template1
Timeline2

Template2

Timeline2

Template2
Timeline3

Template3

Timeline3

Template3

Timeline

Fig. 5: Temporal order

In Fig. 5 the relation between the node types is illustrated.

4 REALIZATION
In the following we will describe the authoring tool, which is
based on the concepts described above. Furthermore we introduce
the run-time environment used for playing back the created AR
manuals.

4.1 Authoring Environment
Obviously the concept of template based authoring can be used
without a decent GUI by editing VRML-files using
Parallelgraphics VRMLPad [12] or any other text editor.
But since we cannot expect that technical writers of manuals are
willing to work this way, we developed a GUI, which supports the
creative process of putting together Augmented Reality based
manuals.
The GUI was developed under Windows 2000/XP using
AVALON, Qt 3.3 and the Workbench environment provided by
Siemens AG.
The GUI is divided into three parts (see Fig. 6).

Fig. 6: The Authoring tool

On the left hand side the user finds a tree-view where he can
browse through the various parts and tools. By double clicking the
selected part or tool is loaded into the system.
The biggest area of the GUI is covered by the AVALON viewer
window. In this window the 3D scene is displayed. A simple
viewer concept allows the navigation within the 3D scene. The

user is able to toggle between different interaction modes (e.g.
select) for this windows via buttons located at the left hand side of
the window. The modes will be explained later in this chapter.
The third area in the lower part of the GUI is the timeline editor.
Here the user is able to arrange the instantiated templates in a
temporal order by defining start and end time of the template as
well as the overall time of the whole work step.
Normally the user of the system will work the following way.
First he loads in the parts and tools he will need to define the work
step. Since he does the authoring in a purely virtual environment,
he might load other parts, which are not relevant for the work step
itself but for orientation purposes.
Then he starts adding templates to the scene by browsing the tree-
view and double clicking the appropriate template name. The
template is loaded into the system and the GUI opens up an
automatically generated dialogue window. Here the user definable
parameters of the template are displayed. In Fig. 7 one can see this
dialogue window.

Fig. 7: Parameterize a template

The information needed for constructing the window are stored in
the template itself. There the authoring tool finds the name of the
EventIn-field to store the value, its value type and a textual
description (see chapter 3.6.1). Depending on the value type,
different GUI elements are used. The mapping from value to GUI
element is straightforward for most cases, except SFNode,
SFRotation and SFTranslation.
In SFNode-fields objects of the scene will be stored. Here we
have to distinguish between parts and standard parts on one hand
and tools on the other hand.
When the AVALON window is in select mode, parts can be
selected through point and click. A reference to the selected part
will be copied to the dialogue window when the “accept” button is
clicked. In Fig. 7 the accept-button can be found in the second line
and is marked with “…”.
Tools are not initially part of the scene and do not have a fixed
location. Thus they cannot be selected by point and click but via a
drop down box filled with all currently loaded tools.
For some templates it is necessary to define a position and
rotation in space (SFRotation and SFTranslation fields), e.g. for
tracking markers or disassembly paths. Of course it is possible to
type in the coordinates or quaternion values, but this is not usable.
Thus we developed the concept of the DOFSensor. The
DOFSensor allows to define rotation and translation in space
graphically. The DOFSensor is a 3D-object of the scene. The
DOFSensor is the the red-green-blue object in Fig. 6. When the
viewer window is in DOF mode its position and orientation can be
manipulated. Clicking on an object in the scene, positions the
DOFSensor at the clicked location. Clicking and dragging one of
the colored tubes allows axis-aligned translation, while clicking
and dragging of the yellow ellipsoids allows rotation of the
DOFSensor. By clicking the accept-button of a SFTranslation or

SFRotation field in the dialogue window, the current values of the
DOFSensor are copied to this field.
After the template is parameterized, start and stop time can be
defined with the timeline editor. A playback functionality allows
the user to preview the work step he created. In Fig. 8 one can see
the result of the parameterization shown in Fig. 7.

Fig. 8: Playing back a template

The authoring tool also allows to create the workflow of a service
task. The workflow defines the connectivity and transition
between the work steps. Due to space constraints this topic will be
omitted.

4.2 Runtime Environment
The service instructions created with the authoring tool are
presented to the service technician using the AR-Browser
augmented reality runtime system, developed in the ARVIKA
project [9]. The AR-Browser is realized as an internet browser
plug in, that can be easily integrated into web-based applications.
The ActiveX-Plugin is configured and controlled through its
scripting interface. Hence the application logic can be
implemented in JavaScript embedded in the web page.
Application logic as well as the content can be easily adapted to
the workers current context. The content can be retrieved from the
local file system as well as from a distant server via http protocol.
The scene descriptions are handled by the AVALON VRML-
engine, a fully compatible and complete VRML97
implementation. The rendering of the virtual environment and, in
case of a video see-through display, the video background is
performed by the open source scene-graph OpenSG [10]. The
authoring tool’s output consists of a XML File describing the
work environment of a particular work step. The description
contains all templates and their parameterization, so the runtime
systems loader can instantiate the required VRML-Templates with
the appropriate parameters.
In addition to the graphical work instructions the scene
description contains a suitable tracking configuration that is
applied to the built in marker based video tracking. This tracking
technology enables the fast and robust determination of the users
position and viewing direction even on mobile hardware. Every
marker is described by his position and orientation and a unique
4x4 pattern. They can be either used for the tracking of the user
with respect to the environment or dynamic objects like
automotive parts that are removed during the service task. While
tracking the real part a phantom geometry representing the parts
shape is used to secure correct occlusions between real and virtual
scene parts.
The user interaction in this scenario is very simple. The
technician’s attention for his real world task is not disturbed too
much. By utilizing speech control he can navigate hands free
through the sequence of task descriptions. Where possible the
transition between task steps are triggered automatically by the
detection of revealed markers or by external signals, for example
generated by a car diagnosis system.

5 APPLICATION SCENARIOS
Concerning the application we focused on Augmented Reality for
car service. Our test scenario was the replacement of the BMW

Valvetronic-servomotor. In this chapter we first describe the
authoring process and how the templates are used. Then we
outline the hardware set-up for the run-time, which will be later
used at the dealer's garage.

5.1 The authoring process
To realize this scenario we initially developed several templates.
An important design goal was that these templates are as generic
as possible so they can be reused for other scenarios too.
The first and most important template is the ConnectToolAndPart-
Template, which is used for visualization of assembly /
disassembly of screws using an adequate tool. The template
needs as argument a tool, a standard part and a hint whether
assembly or disassembly should be shown. Since the tool provides
motion data for the part, the only thing the template has to do is to
establish a connection between tool and part. In fact, the
eventOut-field for motion data of the tool is routed to the eventIn-
field for motion data of the part. Furthermore the part provides the
information about its position and orientation in car coordinate
system to the tool. Thus the tool can be positioned in the correct
way. During animation, the tool gets the fraction-value from the
template and updates the position and orientation of the tool. Then
it transmits the new position and orientation of the part via routes
to the part.
The second template was the LinearMotion-Template. It takes a
part and a position and orientation in space as input values.
Depending on the fraction-value a new position and orientation of
the part is calculated. This is done via linear interpolation between
start position / orientation and the provided input values.
With only those two templates the whole service task could be
realized. The following screenshots show the five work steps of
the repair instruction.
For working on the engine you have to remove the acoustic cover
first of all. This step consists of two partial stages.
Before removing the cover several screws have to be released.
The mechanic needs the information about where the screws are
und which tool is necessary. This is done using the
ConnectToolAndPart-Template four times and set the screws and
a ratchet as input values. The templates are played back at the
same time (see Fig. 9).

Fig. 9: Release screws

Now the cover can be removed. An augmented CAD-object and
two virtual human hands show how to handle the cover the best
way. Here we use the LinearMotion-Template to move the cover
(see Fig. 10).

Fig. 10:Remove acoustic cover

After all covers have been removed the servomotor can be
dismantled. The first step is to unlock the plug. The mechanic
needs to know how the plug is fastened and in which way it can
be released. This is shown by a virtual human hand. Again we use
the ConnectToolAndPart-Template with the plug as part and the
hand as tool (see Fig. 11).

Fig. 11:Unlock plug and disconnect

The servomotor itself is fastened with four screws. The
Augmented Reality based repair instruction shows the required
tool, the bolt head and the positions of the four screws. Four
ConnectToolAndPart-Templates are used for this step (see Fig.
12).

Fig. 12: Release 4 screws

Finally the servomotor can be removed by rotating until it is no
longer engaged in the spline teeth of eccentric shaft. An
augmented arrow points into the correct rotating direction. The
animation includes an occlusion geometry permitting that only the
visible part of the arrow is shown. Again ConnectToolAndPart-
Template was used. Here the tool is not a real tool, but a
“container”, which provides rotational motion data (see Fig. 13).

Fig. 13:Rotate and remove servomotor

After the servomotor was removed, the steps described above are
played back in reverse to show the assembly.
One motivation to use this scenario as an example was the fact
that two years ago it was already created by hand using standard
3D modeling and animation tools. So we were able to get an
impression of the speed-up by using template based authoring.

5.2 The run-time setup
After authoring the work steps, the scenario was saved to disk and
later played back using the runtime environment described in
chapter 4.2.
For real world tests it is not only necessary to please the technical
writers of manuals but also to ease the usage of the AR
technology for the mechanics. Therefore the developers at BMW
designed a very light and robust hardware set-up.
The mechanic is wearing a small camera, a very light head
mounted display and a headset including a microphone and an
earphone. The video and audio data is transmitted wirelessly to a
computer server. The transmission is realized via radio
communication, which is built in a very small and light module.
All the needed technology is embedded in a BMW service jacket.
On the server itself the described runtime environment is running.
The video image is directly fed to the AR browser. The audio
data is sent via a speech recognition module to the AR browser
too. The AR browser analyzes the image using decent tracking
algorithms and calculates the position of the mechanic in relation
to the detected marker. With this information the browser is able
to augment the image with additional information (e.g. arrows,
tools, virtual human hands etc.). It renders a new image consisting
of the video background and the additional virtual objects and
sends it back to the mechanic using the radio connection. Via the
earphone the mechanic gets a feedback or further information like
warnings.
In Fig. 14 a mechanic is shown repairing a component of the
engine. He looks into the engine compartment and gets the
necessary information about what to do next. Augmented objects
guide him through the repair instructions.

Fig. 14: Set-up on CeBIT 2004

Within the next few months we will run field tests using this kind
of set-up and evaluate the usability of the technology.

6 SUMMARY
Template based authoring can help to reduce the development
time of animation based repair instructions. From our scenario we
can conclude that the time needed to create an AR manual can be
reduced dramatically compared to standard modeling tools.
Furthermore this concept allows people without decent IT skills to
create such manuals. So technical writers of traditional manuals
could also be able to create AR based repair instruction by using
the system we developed.
The creation of the templates still needs highly skilled IT
professionals. But from our experience we can say that the
number of different templates is fairly low. We guess that around
25 to 30 of them have to be developed until 95% of all service
tasks within a car could be covered.
Another advantage is the fact that templates standardize the
visualization of the instructions. If the developer of templates
follow a given style guide, the creators of the AR manuals doesn’t
have to think about this issue any more. In fact they are even very
limited in changing it.
Nevertheless the first prototype of the authoring tool shows some
limits. This is mainly because of the restricted interface to the
scene objects. For example it is currently not possible to change
the transparency of parts or tools.
The actual implementation of the DOFSensor also showed some
limitations. It was not very intuitive to position or orient the
graphical object. Furthermore accuracy was fairly low. Since the
positioning of tracking markers relies on the DOFSensor, this task
was tedious to carry out too.
The developed concepts could also be used for service manuals,
where still images and text are replaced by videos (“VR based
manuals”). By adding an easy to use camera animation editor and
video export function, one could easily create such service
manuals.
In the near future we will focus our work on improving the
usability of the authoring tool itself. Furthermore we will separate
the object description and information from the actual VRML file
and store this information in a XML-based data format.
Another important issue will be the development of a style guide
for AR based manuals. Here we will have to work together with
researchers from HCI and usability engineering. We believe that
the insights provided by such a guide will not only be useful for
AR manuals but for the whole AR community.

7 ACKNOWLEDGMENT
We would like to thank the whole ARIAS0 team with people from
Siemens AG A&D ATS/4 in Nürnberg-Moorenbrunn, BMW AG
in München and Fraunhofer-IGD in Darmstadt. Furthermore J.
Behr from ZGDV e.V. for the AVALON support.

8 REFERENCES
[1] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S.,

MacIntyre, B. Recent Advances in Augmented Reality. IEEE
Computer Graphics and Applications 21, 6 (Nov/Dec 2001), 34-47.

[2] Billinghurst, M., Kato, H.” Collaborative Augmented Reality”,
Communications of the ACM, July 2002, Vol. 45, No. 7, pp. 64-70.

[3] Caudell, T. P., Mizell, D. W.: “Augmented Reality: An Application
Of Heads-Up Display Technology to Manual Manufacturing
Processes”, Proceedings of Hawaii International Conference on
System Sciences, 1992, 659-669.

[4] Feiner, S., MacIntyre, B., Seligman, D. “Knowledge-Based
Augmented Reality”, Communications of the ACM, 36(7):53-62,
1995.

[5] Güven, S., Feiner, S. “ Authoring 3D Hypermedia for Wearable
Augmented and Virtual Reality”, ISWC 2003. White Plains, NY,
October 21-23, p. 118-126.

[6] Haringer, M., Regenbrecht, T. ”A pragmatic approach to Augmented
Reality Authoring”, in Proceedings of ISMAR 2002, Darmstadt
2002 Pages:237 – 245

[7] Schmalstieg, D., Fuhrmann, A., Hesina, G.: “Bridging Multiple User
Interfaces With Augmented Reality”, In 3rd Int’l Symposium on
Augmented Reality, pp 20-29, Munich, Germany, 2000

[8] Zauner J., Haller M., Brandl A., Hartmann W., "Authoring of a
Mixed Reality Assembly Instructor for Hierarchical Structures", In
Proceedings of ISMAR 2003, Tokyo, 2003.

[9] Friedrich, W. “ARVIKA - Augmented Reality for Development,
Production and Service”, In Proceedings of ISMAR 2002, Darmstadt
2002, 3-4

[10] AVALON. Avalon Project Home Page, http://www.zgdv.de/avalon/
[11] OpenSG. OpenSG Project Home Page, www.opensg.org
[12] Parallelgraphics VRMLPad product information,

http://www.parallelgraphics.com/products/vrmlpad/
[13] The Virtual Reality Modeling Language, International Standard

ISO/IEC 14772-1:1997, 1997

http://www.arvika.de/
http://www.arvika.de/
http://www.arvika.de/
http://www.zgdv.de/avalon/

	Introduction
	Previous Work
	Template based authoring
	Analyzing real world scenarios
	The core concept
	Templates
	Abstraction Layer for Scene Objects
	Temporal Order of Operations
	Work Step
	Task and Workflow

	Implementation issues
	Templates
	Parts, Standard Parts and Tools
	Temporal order

	Realization
	Authoring Environment
	Runtime Environment

	Application scenarios
	The authoring process
	The run-time setup

	Summary
	Acknowledgment
	References

